Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications 1st Edition
Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications 1st Edition
❗️ This is a Digital product, not a Paperback.
💰 GET 20% OFF for Black Friday deals!! COUPON CODE: CYBER20
Couldn't load pickup availability
Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications 1st Edition
Delivery: Can be download immediately after purchasing. For new customer, we need process for verification from 30 mins to 12 hours.
Version: PDF/EPUB. If you need EPUB and MOBI Version, please send contact us.
Compatible Devices: Can be read on any devices
The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications.
Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field.
The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation.
Audience
Researchers and engineers in artificial intelligence, computer scientists as well as software developers.
![Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications 1st Edition](http://lifegifty.com/cdn/shop/files/9781119821885.jpg?v=1728813802&width=1445)
Subscribe to our emails
Be the first to know about new collections and exclusive offers.